Hybrid Tolerance Rough Set: PSO Based Supervised Feature Selection for Digital Mammogram Images
نویسندگان
چکیده
Breast cancer is the most common malignant tumor found among young and middle aged women. Feature Selection is a process of selecting most enlightening features from the data set which preserves the original significance of the features following reduction. The traditional rough set method cannot be directly applied to deafening data. This is usually addressed by employing a discretization method, which can result in information loss. This paper proposes an approach based on the tolerance rough set model, which has the flair to deal with real-valued data whilst simultaneously retaining dataset semantics. In this paper, a novel supervised feature selection in mammogram images, using Tolerance Rough Set PSO based Quick Reduct (STRSPSO-QR) and Tolerance Rough Set PSO based Relative Reduct (STRSPSO-RR), is proposed. The results obtained using the proposed methods show an increase in the diagnostic accuracy. Hybrid Tolerance Rough Set: PSO Based Supervised Feature Selection for Digital Mammogram Images
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Hybrid Swarm Optimization approach for Feature set reduction in Digital Mammograms
In this paper a CAD (Computer Aided Diagnosis) system is proposed to optimize the feature set using hybrid of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) technique called Genetical Swarm Optimization (GSO) in Digital Mammogram. Even though PSO is a good optimization technique, it may be trapped in local minima and may prematurely converge. So, the genetic operators are used in ...
متن کاملHybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the e...
متن کاملRGAP: A Rough Set, Genetic Algorithm and Particle Swarm Optimization based Feature Selection Approach
Feature selection plays an important role in improving the classification accuracy by handling redundant or irrelevant features present in the dataset. Various soft computing based hybrid approaches like neuro-fuzzy, genetic-fuzzy, rough set-neuro etc. are proposed by researchers to perform feature selection. The existing approaches gives higher complexity and computational cost with low classi...
متن کاملA Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization
Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJFSA
دوره 3 شماره
صفحات -
تاریخ انتشار 2013